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Laboratoire de Physique Théorique et Hautes Energies†, Bâtiment 211, Université de Paris-Sud,
91405 Orsay cedex, France
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Abstract. We study the support (i.e.the set of visited sites) of a t-step random walk on a
two-dimensional square lattice in the larget limit. A broad class of global properties,M(t), of
the support is considered, including for example the number,S(t), of its sites; the length of its
boundary; the number of islands of unvisited sites that it encloses; the number of such islands
of given shape, size, and orientation; and the number of occurrences in space of specific local
patterns of visited and unvisited sites. On a finite lattice we determine the scaling functions that
describe the averages,M(t), on appropriate lattice size-dependent time scales. On an infinite
lattice we first observe that theM(t) all increase witht as∼ t/ logk t , wherek is anM-dependent
positive integer. We then consider the class of random processes constituted by thefluctuations
around average1M(t). We show that, to leading order ast gets large, these fluctuations are all
proportional to asingle universal random process, η(t), normalized toη2(t) = 1. Fort → ∞ the
probability law ofη(t) tends to that of Varadhan’srenormalized local time of self-intersections.
An implication is that in the long time limit all1M(t) are proportional to1S(t).

1. Introduction and summary

The reason for the multiple connections between the random walk and many questions of
current and of permanent interest in science is evidently mathematical. The random walk
models the action of the Laplace operator, which is common to all those problems. Indeed,
important early results on the random walk are due to mathematicians. Among them, the
famous Polya theorem [1] asserts that in spatial dimensionsd 6 2 a random walk is certain
to return to its initial position, whereas ind > 2 it will escape to infinity. The random walk
in d = 2 is, therefore, at its critical dimension for a return to the origin. Many features
associated with this fact make the random walk in two dimensions particularly interesting.
For example, the probability distribution of the time interval,τ0, between two successive
visits of the walk to its initial position decays for large intervals as∼ 1/τ0 log2 τ0, so that
very long excursions occur away from the point of departure. Excellent recent monographs
on random-walk theory have been written by Weiss [2] and by Hughes [3].

In this work we consider thesimple random walkon a two-dimensional square lattice.
The walk starts at timet = 0 at the originx = 0 and steps att = 1, 2, 3, . . . with equal
probability to one of the four neighbouring lattice sites. Our investigation focuses on the
statistical properties of thesupport of the walk at timet , i.e. of the set of sites that have
been visited during the firstt steps.

† Laboratoire associé au Centre National de la Recherche Scientifique–URA D0063.
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Figure 1. A random walker makest random steps between the centres of neighbouring squares.
The squares visited are coloured black and constitute thesupport of the walk. In the example
of this figure the support encloses four islands of unvisited sites. The boundary of the support
is represented by a heavy line.

At any given timet the support can be visualized as a set of black sites (the visited ones)
in a lattice of otherwise white (unvisited) sites, as shown in figure 1. The set of unvisited
sites is divided into components that are disjoint (i.e. not connected via any nearest neighbour
link) and that we callislands. In the course of time existing islands will be reduced in size
and single-site islands will eventually be destroyed; the number of islands increases each
time that a step of the walk cuts an existing island, or the outer region surrounding the
support, into disjoint components.

Questions about the statistical properties of the islands are natural and our interest in
them was raised by a simulation study by Coutinhoet al [4]. These authors investigated the
evolution of the number of islands,I (t), and several of their properties onfinite lattices of
up to 12002 sites. In a short report [5] we showed that an analytic calculation is possible,
both on finite and infinite lattices, forsome(not all) of the quantities considered by Coutinho
et al [4], and that good agreement between theory and computer simulation is obtained. In
this work we present a full account of most of the results announced in [5] and consider a
great many related questions. We are, in particular, led to consider the infinite lattice again.

It appears that the number of islands,I (t), is but one member of a much wider class of
observables, generically to be denoted asM(t), with closely related properties. This class
includes the total number,S(t), of sites in the support as well as the total length,E(t), of
the boundary of the support (on an infinite lattice the boundary length is the sum of the
external perimeter and the perimeters of the islands enclosed).

The main variable that characterizes the support is its total number of sites,S(t),
sometimes called itsrange, which was first studied by Dvoretzky and Erdös [6]. In the
limit of large times,t , it has the average value [6–9]

S(t) ' πt

log 8t
(1.1)

and the root mean square deviation [10, 11]

1S2(t)
1/2 ' A πt

log2 8t
(1.2)

whereA = 1.303. . . and where we write1S ≡ S − S. The typical support is known to be
far from spherical, and its principal moments of inertia and asphericity have been studied
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[12, 13]. Expressions also exist [14] for itsspan, that is, the smallest rectangular box that
it fits in.

The question of calculating the averageS(t) becomes, in general dimension and in an
appropriately taken continuum limit, the celebratedWiener sausageproblem: what is the
volume swept out in timet by a d-dimensional Brownian sphere of finite radius? The
Wiener sausage appears naturally in certain applications of the random walk such as, for
example, the study by Kac and Luttinger [15] of the Bose–Einstein condensation in the
presence of impurities. Historically this continuum problem precedes its lattice counterpart.
It was considered as early as 1933 by Leontovitsh and Kolmogorov [16] and is still today
an active subject of investigation in probability theory ([17]; see [18] for a recent overwiew)
and in mathematical physics [19].

The islands in the support of a lattice random walk have their counterpart in the
connected components into which a two-dimensional Brownian motion path divides the
plane. These have been studied by Mountford [20] and Le Gall [17], and, most recently, by
Werner [21], who determines, among other things, how many there are larger than a given
size,ε, in the limit of ε → 0. The outer boundary of the Brownian motion path has been
considered very recently by Lawler [22].

We characterize as follows the class of observables,M(t), to be studied below. For
each lattice site,x, we introduce anoccupation number, m(x, t), equal to 0 if sitex is
visited by the walker before or at timet , and equal to 1 if it is not. Now letA1 andA2 be
disjoint finite sets of lattice vectors. Then the product∏

a1∈A1

m(x + a1, t)
∏

a2∈A2

[1 − m(x + a2, t)] (1.3)

codes for a specific spatialpattern α ≡ (A1, A2) of white (unvisited) and black (visited)
sites. Whenx runs through the lattice, the product (1.3) equals 1 when the pattern,α,
is encountered and 0 otherwise; hence this product summed on allx represents the total
numberNα(t) of occurrences in space of the patternα. The observables that this work
deals with are thesepattern numbers, Nα(t), and their linear combinations,M(t). It is easy
to see that suitably chosenM(t) may represent, e.g. the total number,S(t), of sites in the
support; the total boundary length,E(t), of the support; the total number,I (t), of islands
of unvisited sites enclosed by the support; or the total number,Iβ(t), of islands of a given
type β (where type stands for shape, size, and orientation). Our main results concerning
the observables,M(t), are of two kinds.

(i) Average behaviour on a finite lattice.On a finite lattice ofN sites the averages,
M(t), approach their limiting values on the time scalet ∼ N log2 N , whereas their main
variation occurs on the earlier time scalet ∼ N logN . We calculate the scaling functions
that describe the time dependence on both time scales. Several of the observables,M(t),
of interest just mentioned are treated as examples. A comparison is made, where possible,
with the simulations by Coutinhoet al [4]

(ii) Average behaviour and fluctuations on the infinite lattice.On an infinite lattice the
fluctuating properties of the support manifest a universality that can be described as follows.
Let M andM ′ be two linear combinations of pattern numbers. Then, with the same notation
as before for deviations from average, we show by explicit calculation that asymptotically
for t → ∞

M(t) ' mk

πk+1t

logk+1 8t
M ′(t) ' m′

k′
πk′+1t

logk′+1 8t
(1.4)

1M(t)1M ′(t) ' A2(k + 1)(k′ + 1)mkm
′
k′

πk+k′+2t2

logk+k′+4 8t
. (1.5)
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Here k and k′ are non-negative integers that depend onM and M ′, respectively, and are
called theirorder; mk andm′

k′ are known proportionality constants; and the same number,
A, appears that was first encountered in the study of the variance ofS(t). The above
equations imply that the normalized deviations from average

ηM(t) = log 8t

(k + 1)A
1M(t)

M(t)
(1.6)

have a correlation matrix,ηM(t)ηM ′(t), whose elements all equal to unity. This can be true
only if all ηM are equal to asingle random variableto be calledη(t). As a consequence
the random variables1M(t) are, to leading order ast → ∞, all proportional toη(t).
Explicitly,

1M(t) ' (k + 1)mk

πk+1t

logk+2 8t
Aη(t) (1.7)

where η(t) is universal (independent ofM). Hence what seemed to be a large number
of independent fluctuating degrees of freedom of the support is hereby reduced, to leading
order ast → ∞, to only a single degree of freedom.

We now briefly summarize the contents of the successive sections. Since all quantities
of interest are, in the end, expressed in terms of the random walk Green’s function, we
collect in section 2 the basic knowledge required about this function. In section 3 we
express the total boundary length,E(t), and the total number of islands,I (t), in terms of
the occupation numbers and discuss the wider class of observables,M(t), of which they
are examples. In sections 4.1 and 4.2 we calculate the time-dependent averagesM(t) of
such observables. In sections 4.3–4.6 the general expression for the result, equation (4.16),
is analysed for large times and explicitly worked out for several examples, both on the
infinite and the finite lattice. In sections 5.1 and 5.2 we show, for the infinite lattice, how to
calculate the correlation between two observablesM(t) andM ′(t). In section 5.3 we arrive
at the final results concerning the random variableη(t). In the discussion in section 6 we
present various comments, compare where possible our lattice results to their continuum
analogues, and speculate about further connections between several quantities.

2. The random walk Green’s function

2.1. Definition

A random walker starts at timet = 0 at the originx = 0 of a square lattice and steps at
each instant of timet = 1, 2, 3, . . . with probability 1

4 to one of its four nearest-neighbour
sites. The Green’s functionG(x, t) denotes the probability that at timet the walker is at
lattice sitex, and

Ĝ(x, z) =
∞∑
t=0

ztG(x, t) (2.1)

its generating function. In this section we collect, in concise form, those properties of the
generating function that will be needed later. An elementary calculation gives, for a finite
periodic lattice ofL × L = N sites,

Ĝ(x, z) = 1

N

∑
q

e−iq·x

1 − 1
2z(cosq1 + cosq2)

(2.2)
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whereq = (q1, q2) = 2π(κ1, κ2)/L with theκi running through the values 0, 1, 2, . . . , L−1.
In the limit of an infinite lattice expression (2.2) becomes

Ĝ(x, z) = 1

(2π)2

∫ π

−π

dq1

∫ π

−π

dq2
e−iq·x

1 − 1
2z(cosq1 + cosq2)

. (2.3)

At each point in this work it will be clear whether we are discussing the finite or the infinite
lattice; in some cases we shall denote corresponding quantities in the two geometries by the
same symbol, as for example in equations (2.2) and (2.3), and not explicitly indicate their
N dependence on a finite lattice.

2.2. Expansion nearz = 1

The long-time behaviour of the physical quantities of interest is determined by the behaviour
of Ĝ(x, z) in the complex plane nearz = 1. Expressions (2.2) and (2.3) both have the
property that forz → 1 the functionĜ(x, z) diverges. In order to study this divergence it
is convenient to write

Ĝ(x, z) = Ĝ(0, z) − g(x, z) (2.4)

where on the right-hand side the termg(x, z) contains all thex dependence and remains
finite for z → 1. We shall discusŝG(0, z) andg(x, z) separately.

2.2.1. The function̂G(0, z) Finite lattice. Expression (2.2) has a simple pole as a function
of z whenever one of the denominators inside the sum onq vanishes. This leads to a
sequence of poles on the real axis forz > 1, of which the first one is located exactly at
z = 1. The interval between two successive poles is ofO(N−1) and contains a zero. Upon
settingx = 0 in equation (2.2) and expanding each term for small 1− z one gets [23]

Ĝ(0, z) = 1

N(1 − z)
+ a(N) − a1(N)(1 − z) + O((1 − z)2) (2.5)

in which the coefficients are functions ofN that in the limitN → ∞ behave as [23]

a(N) = 1

π
logcN + O(N−1)

a1(N) = c1N + O(logN)

(2.6)

with c = 1.8456. . . andc1 = 0.061 87. . .
The expansion in equation (2.5) represents well the behaviour ofĜ(0, z) near the pole

at z = 1, but is certainly not valid on approach of the next pole. It can be used, however,
to determine the location of the zeroz = z0 between the first two poles. Upon solving
equation (2.5) in successive orders forz0 one finds

z0 = 1 + 1

Na(N)

[
1 − c1

a2(N)
+ · · ·

]
. (2.7)

From equations (2.7) and (2.6) we conclude that whenN → ∞ this zero is separated from
the pole atz = 1 by a distance only ofO(1/N logN). All other zeros ofĜ are separated
from z = 1 by a distance of at leastO(N−1). Due to its exceptional proximity toz = 1 the
zeroz0 plays a special role in the long-time behaviour of the random walk on finite lattices.
This fact was first noted by Weisset al [24] and has also been exploited [25] in the study
of the covering time of a finite lattice by a random walk.
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Infinite lattice. When N → ∞ the poles ofĜ become dense to a branch cut and the
expansion nearz = 1 is [26]

Ĝ(0, z) = 1

π
log

8

1 − z
+ O((1 − z) log(1 − z)). (2.8)

Later on in this work, for brevity, we shall also denoteĜ(0, z) asG0(z).

2.2.2. The functiong(x, z) Expandingg(x, z) for finite N aroundz = 1 gives

g(x, z) = gN(x) + g′
N(x)(1 − z) + O((1 − z)2) (2.9)

where we now explicitly indicate that the expansion coefficients areN dependent. We shall
set

g(x) = lim
N→∞

gN(x). (2.10)

Spitzer [27] shows how to calculate theg(x) for x close to the origin. Lettinge1 ande2

denote the unit vectors we have the following values:

g(0) = 0 g(2e1) = 4 − 8/π

g(e1) = 1 g(2e1 + e2) = 8/π − 1

g(e1 + e2) = 4/π.

(2.11)

When combining preceding results we see that for finiteN the quantityĜ(x, z) has the
expansion

Ĝ(x, z) ' 1

N(1 − z)
+ [a(N) − gN(x)] + O(1 − z) (2.12)

whose second term behaves for largeN as

a(N) − gN(x) ' 1

π
logcN − g(x) + · · · (2.13)

with the dots representing terms that vanish asN → ∞.

2.3. Scaling limit

In our study of the fluctuations in section 5 we shall also needĜ(x, z) in the scaling limit
z → 1, x → ∞ with x2(1 − z) fixed. The behaviour in this limit is [9]

Ĝ(x, z) ' 2

π
K0(2x(1 − z)1/2) (2.14)

whereK0 is the modified Bessel function of order zero. As is well known, forz → 1 the
dominant contribution to the sum (2.1) comes from values oft that are ofO((1 − z)−1),
and therefore the scaling limit corresponds to focusing on distancesx of O(

√
t).

3. Islands and other observables

3.1. Islands

If starting at an arbitrary element, one follows the boundary of the support such that the
white sites are on the left and the black ones on the right, then one will return to the point
of departure after having turned either through an angle 2π (if that part of the boundary
encloses an island in the support) or through an angle−2π (if it is the outer boundary of
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Figure 2. Let the boundary of the support be oriented such that as one proceeds along it the
white sites are on the left and the black ones on the right. Then in (a) the boundary turns through
an angle+ 1

2π and in (b) through an angle− 1
2π . In (c) the black squares are (by convention)

considered to separate the white squares from one another and the part of the boundary shown
makes two turns through+ 1

2π .

the support). The number of islands is therefore obtained from the number of turns in the
boundary, by adding those of figure 2(a) with weight + 1

4 and those of figure 2(b) with
weight − 1

4. The diagram of figure 2(c) corresponds to two turns ofπ/2 and therefore
counts with weight factor12. This procedure counts the outer boundary with weight−1
and therefore 2 has to be added to obtain the final result. It is now easy to construct the
expression for the total number of islands in terms of the occupation numbersm(x, t). We
have to shift a 2× 2 window across the lattice, check all 2× 2 local site configurations and
add all those that are of the types of figure 2 with the proper weights. Letx denote the
lower left-hand site in the 2× 2 window. Then, for example, the expression

m(x, t)[1 − m(x + e1, t)] [1 − m(x + e2, t)] m(x + e1 + e2, t) (3.1)

(which is of type (1.3)) equals 1 or 0 according to whether the local 2× 2 configuration
is or is not equal to the diagram of figure 2(c). Writing down analogueous expressions for
all other diagrams, summing these, and subsequently summing them onx yields I (t) as a
linear combination of pattern numbers. After rearranging terms one finds

I (t) = 2 +
∑

x

[m(x, t) − m(x, t)m(x + e1, t) − m(x, t)m(x + e2, t)

+m(x, t)m(x + e1, t)m(x + e2, t)m(x + e1 + e2, t)]. (3.2)

This expression is at the basis of all calculations concerning islands on the infinite lattice.
Finite lattice calculations require a further remark, which is made below with equation (4.44).

3.2. Other observables

We are now interested in other variables whose values can be obtained by the ‘window’
method. To see the general form of these variables, letA be a finite subset of lattice vectors.
The set{x + a|a ∈ A}, obtained by translatingA by a vectorx, will be written asx + A.
The variable

mx+A(t) =
∏
a∈A

m(x + a, t) (3.3)

is equal to unity if at timet all the sites of this set are white (unvisited), and is zero
otherwise. The sum variable

MA(t) =
∑

x

mx+A(t) (3.4)

counts the total number of wholly white sets in the lattice that can be obtained fromA by a
translation. In the remainder we shall also wish to take forA the empty set∅. In that case
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Table 1. The coefficientsµA for the four observablesS, E, I andI1 defined in the text; entries
not shown are zero. Symmetry under rotations overπ/2 has been exploited to reduce the length
of the table. The coefficients in each column add up to zero. The parametergA is undefined
for the empty set∅. A is defined only up to a translation.

µA

A S E I I1 gA

∅ 1 –
{0} −1 4 1 1 0
{0,e1} −4 −2 −4 1/2
{0,e1, e2, e1 + e2} 1 (π + 2)/2π

{0,e1, e2} 4 π/2(π − 1)

{0,e1, 2e1} 2 π/4
{0,e1, −e1, e2} −4 π(π − 6)/2(π2 − 6π + 4)

{e1, e2, −e1, −e2} 1 1

the right-hand side of equation (3.3) should be assigned the value unity and equation (3.4)
shows thatM∅(t) is the total number of lattice sites.

In this work we consider the class of observables

M(t) =
∑
A

µAMA(t) (3.5)

with a finite number of nonvanishing coefficients,µA. Whereas anM(t) is not in general
a unique linear combination of pattern numbers, the representation (3.5) is unique. The
number of islands,I (t), for example, was initially found in section 3.1 as a linear
combination of pattern numbers, and, after a rearrangement of terms, became equal to
expression (3.2), which has the form (3.5). Various other quantities of potential interest
can be expressed this way. Some of these, with their coefficientsµA, have been listed in
table 1. The best known example is the total number,S(t), of sites in the support,

S(t) =
∑

x

[1 − m(x, t)] (3.6)

which hasµA = ±1 for A = ∅ andA = {0}, respectively, andµA = 0 otherwise. Another
example is the total boundary lengthE(t) between the visited and unvisited lattice sites (that
is, the total number of pairs of neighbouring sites of which one is white and one black). It
can be expressed as

E(t) =
∑

x

[m(x, t)(1 − m(x + e1, t) + (1 − m(x, t))m(x + e1, t)

+m(x, t)(1 − m(x + e2, t) + (1 − m(x, t))m(x + e2, t)]

=
∑

x

[4m(x, t) − 2m(x, t)m(x + e1, t) − 2m(x, t)m(x + e2, t)]. (3.7)

We note that one has the relation∑
A

µA = 0 (3.8)

for the three observablesS, E, andI , but that∑
A6=∅

µA = 0 (3.9)

only for E andI , but not forS. Property (3.8) is required if the sum onx in equation (3.4)
is to have a finite limit when the lattice size,N , tends to infinity. The property (3.9) is
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easily traced back to the fact that forE and I the window selects patterns consisting of
both white and black sites, whereas forS it selects only black sites.

4. Averages of observables

4.1. Relation to first passage time probabilities

We shall now calculate in a unified way averages and fluctuations of quantitiesM(t) of
type (3.5). The approach of this subsection will serve as the basis for the developments to
follow. Using equations (3.3)–(3.5) we see that the averagesM(t) are linear combinations
of expressions of the type

mx+A(t) =
∏
a∈A

m(x + a, t)

= 1 −
t∑

τ=0

fx+A(τ)

= 1 −
t∑

τ=0

∑
a∈A

fx+A(x + a, τ ) (4.1)

in which the last two transformations make sense only whenA 6= ∅; fx+A(τ) is the
probability that the walker’s first visit to any site of the setx + A takes place at timeτ ;
andfx+A(x + a, τ ) is the probability that it takes place at timeτ and that it concerns the
specific sitex + a. Upon averaging equation (3.4), using equation (4.1), and passing to
generating functions we find, for all nonemptyA,

M̂A(z) = − 1

1 − z

∑
x

[
∑
a∈A

f̂x+A(x + a, z) − 1]. (4.2)

For the empty set one derives directly that

M̂∅(z) = N/(1 − z). (4.3)

We now sum theM̂A(z) given by equations (4.2) and (4.3) on allA with coefficientsµA.
Using equation (3.8) and introducing for allA 6= ∅

F̂A(a, z) =
∑

x

f̂x+A(x + a, z) (4.4)

yields

M̂(z) = − 1

1 − z

∑
A6=∅

µA

∑
a∈A

F̂A(a, z). (4.5)

With this formula we have reduced the generating function of the average of interest,M(t),
to the quantitiesF̂A which are closely related to first passage times, but still unknown. We
shall now proceed to determine thêFA.

4.2. Solving the first passage time probabilities

Standard random walk theory [27, 2] relates the first passage probabilitiesf̂ to the Green’s
function Ĝ by

Ĝ(x + a, z) =
∑
a′∈A

f̂x+A(x + a′, z)Ĝ(a − a′, z) (4.6)
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for all a ∈ A. With the aid of equation (4.4) we find for̂FA the equation∑
a′∈A

F̂A(a′, z)Ĝ(a − a′, z) = 1

1 − z
(4.7)

for all a ∈ A. This is a matrix equation for thêFA whose dimension is the number|A| of
sites in the setA. This equation possesses special properties which are best exhibited by
converting it to the shorthand notation

γaa′(z) = g(a − a′, z)/G0(z)

Fa = (1 − z)G0(z)F̂A(a, z).
(4.8)

Equation (4.7) then becomes∑
a′∈A

(1 − γaa′(z))Fa′ = 1 (4.9)

for all a ∈ A. If we denote byγ (A) the matrix of elementsγa,a′ with a, a′ ∈ A, then in
matrix notation

(J − γ (A)(z))F = j (4.10)

whereJ andj are the matrix and vector, respectively, of dimension|A|, whose elements
all equal 1. As shown in equation (4.5), we only need the sum of the components ofF .
Formal inversion gives∑

a∈A

Fa =
∑

a,a′∈A

[(J − γ (A)(z))−1]aa′ . (4.11)

In a later stage we shall wish to take the limitz → 1. In view of equation (4.8) and the
known behaviour ofG0(z) this implies thatγ (A)(z) → 0, so that, except when|A| = 1, the
matrix inverse(J − γ (A)(z))−1 in equation (4.11) ceases to exist. We therefore convert that
equation to a form more suitable for taking that limit. In the appendix it is shown that∑

a∈A

Fa = 1

1 − γA

(4.12)

where

γ −1
A (z) ≡

∑
a,a′∈A

[(γ (A)(z))−1]aa′ . (4.13)

Upon coming back to the original notation, but now with the abbreviation

gA(z) ≡ γA(z)G0(z) (4.14)

we find from equation (4.12) the solution of equation (4.7) in the form∑
a∈A

F̂A(a, z) = 1

(1 − z)[G0(z) − gA(z)]
. (4.15)

When |A| = 1, in which case we may takeA = {0}, one deduces directly from (4.7)
that (4.15) holds withg{0}(z) = 0. For A of diameter not too large, as is the case in
many examples of interest, the quantitygA(z) is easily expressed explicitly in terms of the
g(a − a′, z). If after substitution of expression (4.15) in equation (4.5) we sum onA, use
equation (3.8), and transform back to the time domain, we get

M(t) = − 1

2πi

∮
dz

zt+1

1

(1 − z)2

∑
A6=∅

µA

1

G0(z) − gA(z)
(4.16)

where the integral runs counterclockwise around the origin. This result is still fully exact
and applies to both finite and infinite lattices.
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4.3. Long-time behaviour of averages. Infinite lattice

The starting point for the analysis of this section is equation (4.16). On an infinite lattice
the asymptotic behaviour ofM(t) as t → ∞ is determined by thez → 1 behaviour of the
integrand. This behaviour follows from expression (2.8) forG0(z) and from equations (4.14)
and (4.13) which together determinegA(z). We shall satisfy ourselves with retaining the
leadingz → 1 behaviourand corrections that are of the relative order of negative powers
of log(1− z). The terms neglected are of the relative order of 1− z, apart from logarithmic
factors. This means that in equation (4.16) we may replaceG0(z) with π−1 log(8/(1 − z))

and thegA(z) with their values atz = 1, which for brevity we shall denote bygA. The
coefficientgA appears in potential theory and is the two-dimensional lattice analogue of the
electrostatic capacity of the setA; its properties have been reviewed by Spitzer [27].

We expand the summand in equation (4.16) in inverse powers of log(8/(1− z)). Using
the above results we so obtain, asymptotically fort → ∞,

M(t) '
∞∑

n=0

mnJn+1,2(t) (4.17)

where the coefficients,mn, are determined by the observable,M, according to

mn = −
∑
A6=∅

µAgn
A (4.18)

for n = 0, 1, 2, . . . and where

Jn`(t) = 1

2π i

∮
dz

zt+1

1

(1 − z)`

πn

logn 8
1−z

. (4.19)

The t → ∞ behaviour of the integrals (4.19) has been studied, in particular, by Henyey
and Seshadri [28] for the case` = 2. A generalization of their result is

Jn`(t) ' πnt`−1

logn 8t

∞∑
m=0

(−1)m
(

m + n − 1
m

)
bm`

logm 8t
(4.20)

with coefficients

bm` = dm

dxm

1

0(x + `)

∣∣∣∣
x=0

. (4.21)

We haveb0` = 1/(` − 1)! and shall also need explicitly below

b12 = −1 + C = −0.422. . .

b13 = − 3
4 + 1

2C = −0.461. . .

b22 = 2 − 1
6π2 − 2C + C2 = −0.466. . .

b23 = 7
4 − 1

12π
2 − 3

2C + 1
2C2 = 0.227. . .

(4.22)

whereC = 0.577 215. . . denotes Euler’s constant. Combining equations (4.17) and (4.20)
we find for M(t) an asymptotic expansion in inverse powers of logt ,

M(t) ' πt

log 8t
m0 + πt

log2 8t
[−b12m0 + πm1]

+ πt

log3 8t
[b22m0 − 2πb12m1 + π2m2]

+ πt

log4 8t
[−b32m0 + 3πb22m1 − 3π2b12m2 + π3m3] + . . . (4.23)



518 F van Wijland et al

where we have setb02 = 1. We recall that, whereas thebm` are numerical coefficients, the
mn defined by equation (4.18) are specific for the observableM. equation (4.23) shows
that the leading asymptotic behaviour is∼ t/ log 8t for observables that havem0 6= 0, and
∼ t/ log2 8t for those that havem0 = 0 butm1 6= 0. In view of the definition ofm0 and the
discussion at the end of section 3.2, observables withm0 6= 0 involve only black patterns
and will be called, for short, ‘black’ observables, whereas those withm0 = 0 will be called
‘black-and-white’ observables.

4.4. Examples

It is now easy to derive results for many examples of interest by applying the formulae of
section 4.3.

Example 1.1. We take forM the total number,S, of sites in the support. The first column
of coefficientsµA in table 1 shows that the only nonzero term in the sum (4.18) is due to
the setA = {0}. Since this set hasµA = −1 andgA = 0, the only nonzero coefficient
produced by equation (4.18) ism0 = 1. From equation (4.23) we then have

S(t) ' πt

log 8t

[
1 − b12

log 8t
+ b22

log2 8t
− b32

log3 8t
+ · · ·

]
. (4.24)

The numerical values of the coefficients of the first two subleading terms are given in equa-
tion (4.22) and agree with those of Torney [11].

Example 1.2. Next we take forM the total boundary length,E, between the white and
black areas. The second column of coefficientsµA in table 1 shows that only two sets,
A, enter, with the pair(µA, gA) equal to(4, 0) and (−4, 1

2). Equation (4.18) then leads to
m0 = 0 andmn = 22−n for n = 1, 2, . . ., after which equation (4.23) gives

E(t) ' 2π2t

log2 8t

[
1 + ε1

log 8t
+ ε2

log2 8t
+ · · ·

]
(4.25)

with the coefficients

ε1 = 1
2π − 2b12 = 2.416 36. . .

ε2 = 1
4π2 − 3

2πb12 + 3b22 = 3.061 16. . . .
(4.26)

Example 1.3. Now take forM the total number,I , of islands. Using the third column of
coefficientsµA in table 1 as input in equation (4.18) we find thatm0 = 0 and

mn = 21−n − [(π + 2)/2π ]n (4.27)

for n = 1, 2, . . .. Substituting as in the previous examples we find

I (t) ' 1
2π(π − 2)

t

log2 8t

[
1 + ι1

log 8t
+ ι2

log2 8t
+ · · ·

]
. (4.28)

Analytic expressions for the coefficientsιi are easily found with the aid of the preceding
formulae but are of little interest. The numerical values of the first two of them are

ι1 = 12.087. . .

ι2 = −21.304. . . .
(4.29)
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In the leading asymptotic behaviour of bothE(t) andI (t) an extra factor 1/ log 8t appears
compared with that ofS(t) as a consequence ofm0 being zero, i.e. ofE(t) andI (t) being
black-and-white observables. In section 4.5 we shall come back toI (t) and also make a
comparison with the numerical simulations by Coutinhoet al [4].

Example 1.4. Let β be a specific type of island, wheretype indicates shape, size and
orientation. LetIβ(t) be the observable that counts the total number of islands of that type.
According to the preceding discussion we must have that

Iβ(t) ' 1
2π(π − 2)fβ

t

log2 8t
as t → ∞ (4.30)

for some proportionality constant,fβ , even though we cannot expect the approach to this
asymptotic behaviour to be uniform inβ. By summing equation (4.30) on allβ and
comparing to equation (4.28) we conclude that the average number of islands of typeβ

represents, ast → ∞, a fixedfraction, fβ , of the average total number of islands. We have
calculated the fraction,f1, of islands that are single isolated sites and the fraction,f2, of
‘dimer’ islands, consisting of two neighbouring sites, with the result

f1 = −π(π3 − 7π2 + 14π − 4)

(π − 1)(π2 − 6π + 4)
= 0.560 079. . .

f2 = 0.073 557. . . . (4.31)

The main effort goes into the calculation of the necessary coefficientsgA. Those needed
for I1 are listed in table 1. We do not present the 22 coefficients needed forI2, nor the
final analytic expression forf2. Since the dimers may have two orientations, the islands of
sizes 1 and 2 represent a fractionf1 + 2f2 = 0.707 193. . . of all islands.

With these results in hand we return to the total boundary length considered in exam-
ple 1.2. On an infinite lattice one can writeE(t) = Eext(t) + Eint(t), whereEext(t) is the
external perimeter of the support andEint(t) the total perimeter of the islands enclosed by
it. In example 1.2. we determined only the average of their sum; determiningEext(t) and
E int(t) separately is a much more difficult problem that we have not seen how to solve by
the present method. A rigorous lower bound forE int(t) is nevertheless easily obtained by
adding up the perimeters of the single-site and dimer islands, and taking into account that
all other islands have a perimeter at least equal to 8. This givesE int(t) > 0.4965. . . E(t).
By arguments different from ours Lawler [22] shows that in fact fort → ∞ the external
perimeter increases only asEext(t) ∼ t2/3, so thatE int(t) ' E(t).

Example 1.5. Finally let M(t) be equal to the pattern numberNα(t) obtained by summing
the expression (1.3) over all sitesx. If neither A1 nor A2 is empty, then the patternα is
composed of both white and black sites and hasm0 = 0. Hence the average total number
of these patterns is obtained by settingm0 = 0 in equation (4.23) and increases witht as

Nα(t) ' m1
π2t

log2 8t
(4.32)

where m1 is α dependent. The black-and-white patterns considered here necessarily lie
on the boundary of the support; comparison of equations (4.32) and (4.25) shows that the
number per unit of boundary lengthof such patterns tends to a fixed value ast → ∞.
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4.5. Long-time behaviour of averages. Finite lattice

For a finite lattice ofN sites, after an initial increase with time identical to what happens on
the infinite lattice, we must expect deviations from the infinite lattice behaviour to appear
on a characteristicN dependent time scaleτ(N) that will tend to infinity whenN does.
For larger times all black observables will level off and tend to a constant timesN , and
all black-and-white observables will pass through a maximum value, then bend down and
asymptotically approach zero. The expansion that we shall look for in the case of a finite
lattice will therefore involve a determination of this time scale.

We shall not attempt in this case a full asymptotic expansion as for the infinite lattice, but
only determine the leading asymptotic behaviour. Our starting point is again equation (4.16),
in which, whenz → 1, using equations (2.5) and (2.6), we may substitute

G0(z) − gA(z) = 1

N(1 − z)
+ 1

π
logcN − gA + · · · (4.33)

where as beforegA stands forgA(1) and the dots denote higher-order terms. As for the
infinite lattice, our procedure will be to bring the summation onA outside the integration on
z and shift the integration path around the poles of the integrand. Therefore we should now
discuss these poles. All required knowledge about the behaviour of the various quantities
involved has been collected in section 2.2. First, it follows from equation (4.33) and the
definition (4.18) ofm0 that for z → 1∑

A6=∅
µA

1

G0(z) − gA(z)
' −Nm0(1 − z). (4.34)

Hence the integrand of equation (4.16) has a simple pole atz = 1 with residueNm0.
Secondly, as is clear from the discussion in section 2.2, this integrand has special simple
poles forz = zA, where

zA = 1 + π

N logcN

[
1 + πgA

logcN
+ O

(
1

log2N

)]
. (4.35)

These are the only poles at a distance ofO(1/N logN) from z = 1, all the other ones being
at least at distances ofO(1/N). Therefore, on time scales that are at least ofO(N logN),
the other poles will contribute vanishingly to the result.

Carrying the integral out but retaining only the contribution of the poles atz = 1 and
z = zA leads to

M(t) ' Nm0 + N
∑
A6=∅

µA exp

[
− πt

N logcN

(
1 + πgA

logcN
+ O

(
1

log2N

))]
. (4.36)

The first term in this equation is not present for the black-and-white observables, which have
m0 = 0. We shall discuss these observables first. Two different time scales are of interest.

(1) The main regime,in which an observable takes values of the same order as its
maximum value. To focus on this regime we scale time as

τ = πt

N logcN
(4.37)

and take the limitN → ∞, t → ∞ at τ > 0 fixed. In this ‘τ -limit ’ equation (4.36) leads
directly to

M(t) ' πN

logcN
m1τe−τ (4.38)

with m1 defined by equation (4.18).
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(2) The long-time regime,in which the observable approaches its final value. It is now
appropriate to scale time as

σ = πt

N log2cN
(4.39)

with σ > 0. In this ‘σ -limit’ equation (4.36) gives

M(t) ' N(cN)−σ
∑
A6=∅

µAe−πgAσ . (4.40)

One may notice that the result (4.38) is recovered from equation (4.40) if one sets
σ = τ/ logcN and expands the terms inside the sum onA to first order in 1/ logcN .

For black observables equation (4.36), with the scaling of equation (4.37), leads directly
to

M(t) ' Nm0(1 − e−τ ). (4.41)

This decay law depends on the type of the black pattern only through the prefactorm0.

4.6. Examples

We consider the same examples as in section 4.4 but now on the finite lattice.

Example 2.1. Let M = S. Substitutingm0 = 1 in equation (4.36) we see that on a finite
lattice of N sites the average number of unvisited sites decays as

N − S(t) ' Ne−τ (4.42)

a result first obtained by Weisset al [24]. It is also valid in the long-time regime, where it
can be written asN(cN)−σ . In this regime, sinceσ > 0, the unvisited sites constitute an
infinitesimally small fraction of all lattice sites.

Example 2.2. Let now M = E. Using in equation (4.36) the appropriate coefficientsµA

from table 1 we obtain

E(t) ' 2πN

logcN
τe−τ

E(t) '4N(cN)−σ (1 − e−πσ/2)

(4.43)

in the main and long-time regimes, respectively. The prefactorN(cN)−σ in the second
one of these equations is the average number of unvisited sites found in the preceding
example. If these sites were randomly distributed, then since they are infinitely dilute,
each of them would have four visited neighbours and the result forE(t) would be only
4N(cN)−σ . Hence the factor 1−e−πσ/2 represents nontrivial correlations due to unvisited
sites clustering together.

Example 2.3. Let M = I . Using in equation (4.36) the coefficientsµA from table 1
appropriate to this case, we find

I (t) ' (π/2 − 1)N

logcN
τe−τ

I (t) 'N(cN)−σ (1 − 2e−πσ/2 + e−(π+2)σ/2)

(4.44)

for the main regime and the long-time regime, respectively. Again, the factor in parentheses
in the last equation is due to correlations in the positions of the unvisited sites.
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This example requires the following remark. The expression of equation (3.2) for the
number of islands,I (t), is correct only for the infinite lattice. For the finite lattice with
periodic boundary conditions in both directions one should add−1 when the support closes
onto itself around the torus in one of the directions and−2 when it does so in both directions.
In the latter case the first term in equation (3.2) is absent and one obtains the expression
that we used to derive equations (4.28) and (4.44). The extra term−2 is of course of no
importance in the main regime, but it needs to be taken into account in the long-time regime
to ensure thatI (t) vanishes whent tends to infinity.

If we neglect the difference between averages of ratios and ratios of averages, then we
have from equations (4.42), (4.43), and (4.44) that the quantities

[N − S(t)]/I(t) ' 1/(1 − 2e−πσ/2 + e−(π+2)σ/2)

E(t)/I (t) ' 4(1 − e−πσ/2)/(1 − 2e−πσ/2 + e−(π+2)σ/2)
(4.45)

represent the average area and the average perimeter, respectively, of an island. In the main
time regime the expression for the average area simplifies to

[N − S(t)]/I(t) ' 2 logcN

π − 2
τ−1. (4.46)

It is now possible to make a comparison with the simulations by Coutinhoet al [4], carried
out on finite square lattices of up toN = 12002 sites with periodic boundary conditions.
These authors were interested in the ‘fragmentation’ of the finite lattice into islands and the
way the average number and size of the islands eventually tend to zero. The comparison
leads to the following conclusions.

(i) In an early time regime, which for a lattice of 6002 sites corresponds tot less than
≈ 0.5× 106, the finite lattice size still plays no role and our equation (4.28) forI (t) agrees
within error bars with the simulation data shown in [4] forN = 6002. These data are for
t > 0.05× 106; for the agreement to be of this quality, not only the leading-order term but
also the two correction terms in equation (4.28) have to be taken into account.

(ii) In the early time regime and in the main regime, whereI (t) passes through its
maximum, our long-time expansion equation (4.44) overestimates the numerical values of
I (t) by up to 50%; in the long-time regime, whenI (t) starts to decay, the agreement with
the simulation data becomes rapidly better and stays good all the way up tot ≈ 19× 106,
where with a large probability, no unvisited sites are left.

(iii) Coutinho et al [4] in their simulation find the time-dependent average island size
on a lattice ofN sites to be a function only of the scaling variableσ . Our expression (4.45)
confirms this result. The scaling function is not, however, the power law that it was thought
to be in [4], but the inverse of a sum of exponentials given in equation (4.45). According to
our equation (4.46) a power law appears only in the main regime and has the exponent−1.
In the long-time regime equation (4.45) leads to an apparent exponent with larger absolute
value.

(iv) In the preceding discussion we have compared the numerical data for the average
island size[N − S(t)]/I (t) to the theoretical result (4.45) for [N −S(t)]/I(t) that we were
able to calculate. We have not been able to directly calculate the average island size. Nor
have we been able to calculate still another quantity determined in the simulation of [4],
namely the time-dependent ‘diversity’ of the island sizes, defined as the number of different
sizes that occur at any given time.
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5. Fluctuations and correlations

5.1. Relation to a first passage time problem

The original determination by Dvoretzky and Erdös [6] of the average numberS(t) of
lattice sites in the support of a random walk was followed only much later [10, 11] by a
calculation of the root-mean-square deviation of this quantity from its average. Yet that
calculation was important, because the result, exhibited in our equation (1.2), shows that in
the limit t → ∞ the probability distribution ofS(t) becomes infinitely narrow, even though
only logarithmically slowly witht .

It is now natural to ask if the more general observables whose averages we studied
in section 4 also have infinitely narrow distributions fort → ∞. Without much extra
effort it will be possible to also calculate the cross-correlations. We therefore consider two
observables of the form (3.5), namely

M(t) =
∑
A

µAMA(t) M ′(t) =
∑
B

µ′
BMB(t) (5.1)

which have
∑

A µA = ∑
B µ′

B = 0, and focus on

1M(t)1M ′(t) ≡ M(t)M ′(t) − M(t)M ′(t). (5.2)

In this section we confine our analysis to the infinite lattice.
The first step will be to find an expression for the generating functionĈMM ′ defined by

ĈMM ′(z) =
∞∑
t=0

ztM(t)M ′(t). (5.3)

When working out the right-hand side of equation (5.3) with the aid of equations (5.1)
and (3.4) we encounter averages of productsmx+A(t)my+B(t) wherex andy are arbitrary
lattice vectors. It is then convenient to writey = x + r and to defineU(r) as the union of
A andr + B.

With this notation we get

M(t)M ′(t) =
∑
A,B

µAµ′
B

∑
r

MU(r)(t). (5.4)

The observableMU(r) is of the form (3.4), withA replaced byU(r). We can therefore
directly apply the results of sections 4.1 and 4.2. After separating the terms with either
A = ∅ or B = ∅ from the others one finds

ĈMM ′(z) = − 1

1 − z

∑
A,B 6=∅

µAµ′
B

∑
r

[ ∑
u∈U(r)

F̂U(r)(u, z) −
∑
a∈A

F̂A(a, z) −
∑
b∈B

F̂B(b, z)

]
(5.5)

which is exactly of the form (4.5). The first sum in the square brackets, in particular,
is just given by equation (4.15) withA replaced byU(r), and is therefore equal to
(1 − z)−1[G0(z) − gU(r)(z)]−1.

5.2. Scaling limit and long-time behaviour

Further analysis of equation (5.5) requires that we render ther dependence ofgU(r) more
transparent. This we shall be able to do only in the scaling limitz → 1, r → ∞, with
ξ2 ≡ 4r2(1−z) fixed. But sincez → 1 is exactly the limit of interest, this suffices provided
the sum onr in equation (5.5) is dominated by valuesr ∼ (1 − z)−1/2. In the notation of
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section 4.2 the quantitygU(r) is defined with the aid of the matrixg(U(r)). In the scaling
limit we need to consider only the case where the constituentsA and r + B of U(r) are
disjoint sets. We may then use the scaling form equation (2.14) for theĜ(r +b−a, z) that
appear in the definition ofg(U(r)). These scaling expressions are to leading order in 1− z

independent ofa andb, which is at the origin of the resulting simplification. In the scaling
limit g(U(r)) has two diagonal blocks,g(A) andg(B), and two off-diagonal blocks all whose
elements are equal to 1− λ with

λ(ξ, z) = 2π−1K0(ξ)/G0(z). (5.6)

In the appendix it is shown that

1

1 − γU(r)

' 2 − 2λ − γA − γB

1 − λ2 − γA − γB + γAγB

. (5.7)

Upon using the preceding results in equation (5.5) and replacing the sum onr by an integral
on ξ we find

ĈMM ′(z) ' − π

2(1 − z)3G0(z)

∑
A,B 6=∅

µAµ′
B

∫ ∞

0
dξ ξI (ξ, z) (5.8)

in which the functionI (ξ, z) is given by

I = 2 − 2λ − γA − γB

1 − λ2 − γA − γB + γAγB

− 1

1 − γA

− 1

1 − γB

. (5.9)

It is useful to observe that the three quantitiesγA(z), γB(z), andλ(ξ, z) are all of the order
of G−1

0 (z).
The steps that follow are again analogous to the procedure of section 4.3. We wish

to expandI (ξ, z) in inverse powers ofG0(z) and substitute the result in equation (5.8).
The µ′

B that characterize the observableM ′ define coefficientsm′
n analogous to themn of

equation (4.18). Furthermore in the expansion we encounter the coefficients

an =
∫ ∞

0
dξ ξKn

0 (ξ) (5.10)

of which we shall need the explicit valuesa1 = 1 anda2 = 1
2, as well as [10, 11]

a3 = −1

2

∫ 1

0
dξ

logξ

1 − ξ + ξ2
= 0.585 97. . . . (5.11)

Finally, before working out this expansion it is useful to classify the observables,M,
according to their order. We shall say thatM is of theorder of k if

m0 = m1 = · · · = mk−1 = 0 and mk 6= 0. (5.12)

Observables of the order ofk = 0 andk = 1 have occurred in the preceding sections, and
physically interesting examples withk > 2 perhaps exist. Now letk and k′ be the orders
of M and M ′, respectively. We anticipate—as will be confirmed by the calculation—that
we have to expand̂CMM ′(z) in equation (5.8) to the order of 1/Gk+k′+4

0 (z). In view of
equations (5.12) and (4.18) only those terms in the expansion will survive the summation
on A and B that contain at least a factorγ k

A and a factorγ k′
B . Since there is one factor

1/G0(z) outside the sum in equation (5.8), this leaves room for at most three factorsλ. We
have therefore found it convenient to begin by expandingI = I ′λ + I ′′λ2 + I ′′′λ3 + · · · and
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then to determine the first three coefficients of this series in terms ofγA andγB . Then the
1/G0(z) expansion ofĈMM ′(z) leads to

ĈMM ′(z) ' 1

(1 − z)3Gk+k′+2
0 (z)

[2a1mkm
′
k′ − G−1

0 (z)(π−1(k + k′ + 2)a2mkm
′
k′

−2a1(mkm
′
k′+1 + mk+1m

′
k′)) + G−2

0 (z)(8π−2(k + 1)(k′ + 1)a3mkm
′
k′

−2π−1(k + k′ + 3)a2(mkm
′
k′+1 + mk+1m

′
k′)

+2a1(mkm
′
k′+2 + mk+1m

′
k′+1 + mk+2m

′
k′)) + · · ·]. (5.13)

The next step is to invert equation (5.3). After integrating onz with the aid of equation (4.20)
one finds

M(t)M ′(t) ' πk+k′+2t2

logk+k′+2 8t

[
a1mkm

′
k′ + 1

log 8t
(−(k + k′ + 2)(2a1b13 + a2)mkm

′
k′

+πa1(mkm
′
k′+1 + mk+1m

′
k′)) + 1

log2 8t
({(k + k′ + 2)(k + k′ + 3)

×(a1b23 + 2a2b13) + 4(k + 1)(k′ + 1)a3)}mkm
′
k′

−(k + k′ + 3)π(a2 + 2a1b13)(mkm
′
k′+1 + mk+1m

′
k′)

+π2a1(mkm
′
k′+2 + mk+1m

′
k′+1 + mk+2m

′
k′)) + · · ·

]
. (5.14)

From equation (4.23) we deduce that whenM is of the order ofk its average is given by

M(t) ' πk+1t

logk+1 8t

[
mk + 1

log 8t
(−(k + 1)b12mk + πmk+1) + 1

log2 8t
( 1

2(k + 1)(k + 2)b22mk

−π(k + 2)b12mk+1 + π2mk+2) + · · ·
]
. (5.15)

Equation (5.15), its counterpart forM ′(t), and equation (5.14) now have to be combined in
equation (5.2). Using the explicit expressions for the coefficientsa1, a2, b12, b13, b22, and
b23 leads to the desired correlation function. Fort → ∞ the two leading orders cancel in
the subtraction in equation (5.2). The final result is

1

(k + 1)(k′ + 1)

1M(t)1M ′(t)
M(t)M ′(t)

' A2

log2 8t
+ · · · (5.16)

where the dots indicate terms of higher-order in 1/ log 8t and

A2 = 4a3 + 1 − 1
6π2 = 1.698 97. . . . (5.17)

Equation (5.16) contains as a special case the well known result of equation (1.2) for the
variance ofS(t), originally due to Jain and Pruitt [10], and rederived with the aid of a
method more similar to ours by Torney [11].

5.3. Conclusions

It is remarkable that the ratio on the right-hand side of equation (5.16) is universal. It
is independent of the choice of the observablesM and M ′. But we shall now see that
equation (5.16) has consequences that reach far beyond this simple fact.

For k = 0, 1, 2, . . . we define for each observableM of orderk its normalized deviation
from average,ηM , by

ηM(t) = log 8t

(k + 1)A
1M(t)

M(t)
. (5.18)



526 F van Wijland et al

These variables satisfy to the leading order

ηM(t) = 0 ηM(t)ηM ′(t) = 1 for all M, M ′. (5.19)

It follows that for any twoM andM ′ the differenceηM(t) − ηM ′(t) has zero variance, and
therefore theηM(t) are all equal to a single random variablethat we shall callη(t). As a
consequence we can relate the deviation from average1M(t) of any observableM(t) of
orderk to η(t) by

1M(t) ' (k + 1)
A

log 8t
M(t)η(t). (5.20)

Upon writing down this equation for the special caseM = S, using the explicit expression
(4.24) forS, and eliminatingη(t), one finds

1M(t) ' (k + 1)
πk

logk 8t
mk1S(t). (5.21)

This last equation embodies one of the main conclusions of this work.All the observables,
M, fluctuate around their averages in strict proportionality with the fluctuation of total
number of sites,S(t), in the support.This conclusion applies, in particular, to the pattern
numbers,Nα(t), the total perimeter length,E(t), of the support, the total number,I (t), of
islands enclosed by it, and the total number,Iβ(t), of islands of a specific typeβ. We are
not aware of any computer simulations that confirm equation (5.21), although they would
be easy to carry out.

There is another different and instructive way to formulate this conclusion. LetM be an
observable of orderk andρ a quantity that remains ofO(1) when t → ∞. equation (5.15)
can now be used to establish the asymptotic expansion in powers of 1/ log 8t of ρ−1M(ρt).
Upon comparison with equation (5.20) and choosing logρ = −Aη(t) one finds that all
fluctuating observables,M(t), can be written to the second order in the form

M(t) ' eAη(t)M(e−Aη(t)t). (5.22)

In the mathematical literature on Brownian motion (for a review see Le Gall [18]) the
quantity−Aη/(2π) has appeared in the study of the asymptotic behaviour of the volume
of the Wiener sausage (where it is commonly denoted by the symbolγ ) and is known as
the renormalized local time of self-intersections, a concept introduced by Varadhan in an
appendix to an article by Symanzik [29].

6. Discussion

In a preceding letter [5] a more general approach was presented to the much more
restricted problem of how to calculate the averageI (t). The total number of islands was
written as I (t) = C(t) − D(t), where the increments1C(t) = C(t) − C(t − 1) and
1D(t) = D(t) − D(t − 1) are the numbers of islands created and destroyed, respectively,
in the t th step (either1C(t) or 1D(t) vanishes). HenceC(t) and D(t) are the total
number of islands created and destroyed, respectively, up until timet . It was shown [5]
that asymptotically fort → ∞ to leading order

C(t) ' D(t) ' A
πt

log 8t
(6.1)

where A = 0.1017. . .. In the differenceI (t) = C(t) − D(t) the leading order (6.1)
cancels and the result (4.28) appears. It does not seem possible to expressC(t) and
D(t) as observables of the typeM(t). The additional determination ofC(t) and D(t)
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makes the calculation of [5] more involved. Nevertheless, the generating function found
there (equation (5) of [5]) for d2I (t)/dt2 is equivalent to the one forI (t) implied by
equation (4.16) of this work.

The success of the study presented here is due to the generating function method, whose
potential is fully exploited. We also run into what may be the limitations of this method.
There are several quantities that appear naturally but whose averages and variances we
do not see a way to determine. These include the total external perimeter discussed in
section 4.4 and the area of the islands enclosed by the support.

Many of the quantities discussed in the preceding chapters have close analogues in
planar Brownian motion. We shall denote these analogues by the superscriptB. The
Brownian motion analogue of the support of the lattice random walk is the set of points
SB

b (t) ⊂ R2 that has been swept out in the time interval [0, t ] by a disk of radiusb

performing Brownian motion with diffusion constant,D. The set,SB
b (t), is commonly

called theWiener sausageassociated with the Brownian motion trajectory. The total area,
SB

b (t), of this set is analogueous to the number of sites,S(t), in the support of the lattice
random walk.

The diffusion constant,D, is defined by the requirement that the mean square
displacement equal 4Dt . It can be scaled away, but we shall keep it here to facilitate
comparisons between results from different sources. In the mathematical literature one
customarily setsD = 1

2, whereas the long-time, large-distance limit of the random walk of
this work yieldsD = 1

4.

The asymptotic behaviour ofSB
b (t) was first determined by Leontovitsh and Kolmogorov

[16]. Berezhkovskiiet al [19] give the complete asymptotic expansion

SB
b (t) ' 4πDt

logκDtb−2

∞∑
m=0

(−1)mbm2

logm κDtb−2
(6.2)

whereκ ≡ 4e−2C and thebm2 are as defined by equation (4.21). The difference1SB
b (t)

was shown [18] to be a random variable such that the distribution oft−1(log t)21SB
b (t)

converges fort → ∞ to a limit distributionidentical to the one oft−1(log t)21S(t).
Two remarks can be made about the relations obtained by differentiating equation (6.2)

with respect tob. First, letEB
b (t) be the total boundary length of the Wiener sausageSB

b (t).
Assuming that∂SB

b is sufficiently regular we have

EB
b (t) = dSB

b (t)

db
. (6.3)

Upon averaging, using equation (6.2) and settingb02 = 1, we find from equation (6.3)

EB
b (t) ' 8πDtb−1

log2 κDtb−2
[1 + · · ·]. (6.4)

This expression has the same asymptotic time dependence as equation (4.25) forE(t),
but the coefficients do not coincide. Secondly, differentiate once more and consider the
dimensionless number

JB
b (t) ≡ −d2SB

b (t)

db2
. (6.5)

Its average behaves in the larget limit as

JB
b (t) ' 8πDtb−2

log2 κDtb−2
. (6.6)
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It is easy to show thatif the boundary∂SB
b (t) is sufficiently regular (having at least a

tangent vector in each point), then the quantity (6.5) is equal to 2π(IB
b (t) − 2), with IB

b (t)

the number of islands. However, these regularity conditions are not satisfied here since the
boundary has cusp points. Nevertheless, comparison of equations (6.6) and (4.28) shows
thatJB

b (t) has the same asymptotic time dependence asI (t) (but with a different coefficient).
We now discuss the relation of our work to results that have appeared in the mathematical

literature. Throughout the comparison it should be borne in mind that whereas those results
are rigorous, the ones of this paper have been obtained by the usual methods of mathematical
physics.

Mountford [20] was the first to study the connected components of the complement of
the Brownian path of a point (i.e. the caseb = 0). For all timest > 0 the number of these
components is infinite due to the presence of many small ones. However, one can ask, for
example, what the numberCε(t) is of connected components with an area larger than a
prescribed valueπε2. Le Gall, strengthening the results due to Mountford, has shown that
for almost all Brownian motion trajectories (withD = 1

2) in a fixed time interval

lim
ε→0

ε2 log2 Dtε−2

4Dt
Cε(t) = 2 (6.7)

where we have used dimensional analysis to restore the variablesD and t . If one now
assumes thatCε(t) is of the same order of magnitude as thetotal numberIB

ε (t) of islands
in the Wiener sausage associated with the same Brownian motion trajectory executed by a
disk of radiusε, then equation (6.7) has an asymptotic time dependence that agrees with
the result of our equation (4.28).

Werner [21] considers theshapeof the connected component containing a prescribed
point not on the trajectory, and shows that fort → ∞ the probability distribution of this
quantity tends to a well-defined limit law. This result is possible only because of the
scale invariance of Brownian motion and it would be cumbersome to formulate its lattice
counterpart, even in the long-time, large-distance limit. The statement of our equation (4.30)
about the number of islands,Iβ(t), of given typeβ, and the associated result about its
fluctuation,1Iβ(t), implied by the discussion at the end of section 5, constitute the point
of closest approach between this paper and Werner’s.

Finally, we summarize the new results of this paper. On the one hand, we give the
explicit asymptotic behaviour ast → ∞ for several new observables associated with the
support of the lattice random walk. These include the total perimeter length, the total
number of islands, and the total number of single-site and dimer islands. On an infinite
lattice the asymptotic behaviours all consist of a leading term multiplied by a series in
inverse powers of 1/ log 8t . The perimeter and the number of islands are also considered
on a finite lattice, where scaling laws are obtained in terms of the time,t , and the lattice
size,N , and a comparison with computer simulations by Coutinhoet al [4] is possible.

On the other hand, there is the important general result of section 5.3, stating that the
pattern numbers all fluctuate in strict proportionality with one another and with the total
number,S(t), of sites in the support. The fundamental fluctuating variable, calledη in this
work, is the renormalized local time of self-intersections. This result strongly contributes to
shape our picture of the support of the two-dimensional random walk. At any fixed time,t ,
a large class of detailed properties is determined by the value of the single random variable,
η.

One of the open questions that can now be formulated is connected exactly with this
random variable, which appears in our work as the time dependent variable,η(t). Existing
results seem to concern exclusively its stationary distribution,P(η), which prevails in
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the limit t → ∞. Our investigations point towards the interest of also studying the
autocorrelation function,η(t)η(t ′), and possibly other time-dependent properties. A second
question that naturally comes up is: how does the picture in higher dimensions differ
from the one found here ind = 2? It should certainly be expected that, in sufficiently
high dimension, the pattern numbers lose their rigid proportionality and that independently
fluctuating random variables appear. The mechanism by which this independence comes
about seems worthy of further elucidation. We leave these and other questions for future
work.

Acknowledgments

HJH acknowledges a discussion with Professor M Coutinho-Filho that laid the germ out of
which part of this work grew, and thanks him for correspondence on the simulation results
for finite lattices. FvW and HJH thank Dr M Yor, Dr W Werner, and Professor G Lawler for
discussions helping them to interpret their results in the light of the mathematical literature.

Appendix

In this appendix we prove the matrix algebra results we use to derive averages and
correlations.

The following result is used in section 4.2. LetA denote an invertible matrix of
dimension` × `, with ` > 2. In what followsJ [m,n] stands for them × n matrix whose
elements areJ [m,n]

ij = 1. Define furthermore

g−1
A ≡

∑
i,j

(A−1)ij = Tr(J [`,`]A−1). (A.1)

We wish to express

0A ≡
∑
i,j

[(J [`,`] + A)−1]ij (A.2)

in terms ofgA. To this end we rewrite equation (A.2) as

0A = Tr[J [`,`]A−1(1 + J [`,`]A−1)−1] (A.3)

where1 is the unit matrix. An intermediate step of the demonstration consists in noting
that

J [k,l]CJ [`,m] = g−1
C−1J

[k,m] (A.4)

where C is a square matrix of dimensioǹ× `. In equation (A.3) we now expand the
argument of the trace in powers ofJ [`,`]A−1. Iteration of equation (A.4) and use of
equation (A.1) lead to

Tr[(J [`,`]A−1)n] = g−n
A (A.5)

whence

0A = 1

1 + gA

. (A.6)

When` = 1 formula (A.6) remains valid for allA ∈ R (and in particular forA = 0) if for
that case one supplements equation (A.1) withgA = A.
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A generalized version of the above result is needed in section 5. It involves two
invertible matricesA andB of dimensions̀ × ` andm × m, respectively, with̀ ,m > 2.
We now wish to express

0AB(λ) ≡
∑
i,j

[( −A (1 − λ)J [`,m]

(1 − λ)J [m,`] −B

)−1
]

ij

(A.7)

in terms ofgA and gB . The matrix that appears in equation (A.7) can be decomposed as
the sum of two terms,

(1 − λ)

[
J [`+m,`+m] −

(
J [`,`] + 1

1−λ
A 0

0 J [m,m] + 1
1−λ

B

)]
. (A.8)

After applying equation (A.6) first to the block-diagonal matrix appearing in this
decomposition and then to both of its blocks, one obtains

0AB(λ) = 2 − 2λ + gA + gB

1 − λ2 + gA + gB + gAgB

. (A.9)

By redoing the calculation with̀ or m = 1 one finds that this expression for0AB remains
valid for those special cases.

The transformed expressions of equations (A.6) and (A.9) are well-suited for taking the
limit A → 0 andB → 0 with all their matrix elements proportional to a vanishing parameter,
since it is easily seen that thengA andgB are also proportional to that parameter.
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